
Risks Level Assessments for Automotive Application

Jean-Nicola Russo, Thomas Sproesser, Frédéric Drouhin and Michel Basset

Modelisation Intelligence Process Systems, Haute-Alsace University,
68093 Mulhouse CEDEX, France (e-mail: firstname.name@uha.fr).

Abstract: The article presents a modelization and assessment of automotive risk accidents
taking into account the interactions between environment, driver and vehicle. The evaluated
risk is composed of two parts: one concerns the impending risk (i.e. risk of a clearly identified
danger and which is present in a short time horizon) and the other one, the latent risk (i.e.
risky behavior of the driver which can lead to an accident). The developed tool uses information
present in the CAN bus, additional sensors and car communication for shared sensing. With the
collected information and estimated variables (e.g. grip and reaction time), it infers a probability
of risk with a Bayesian Network. The tool can also be used for evaluating autonomous car driving
and driver decisions.
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1. INTRODUCTION

Driver inattention and unconsciousness are the most im-
portant causes of road accidents. As a response, over
the years, French governments imposed rules (see ONISR
(2014)) such as speed limitation, speed limit control, blood
alcohol limit, alcohol test on road, etc. In the same time,
vehicles manufacturers have developed passive and active
safety, for example: crumble zone, airbag, anti-lock braking
system and electronic stability control.

Thanks to those actions between 1970 and 2013 road
deaths have gone down from 20’000 to 4’000 deaths per
year. Advanced driver assistance systems (ADAS) and
road infrastructure contribute to ensure improvement in
road safety. However, nowadays, road death decreases only
slowly. So to continue the enhancements, one idea is to take
into account interactions between the environment, driver
and vehicle.

Vehicle and environment states predictions can be easier
handled than prediction of driver reactions. Hence, one
solution is to replace the driver by developing autonomous
car. Nowadays few companies already propose marketable
cars such as Google and Tesla, but those vehicles do not
communicate. To obtain the same results, the first step is
to develop ADAS. For example, Otto et al. (2012) track
pedestrian in the blind spot. For their work, they use
several cameras and a radar, fuse their measures and run
it with an extended Kalman filter. Another active safety
system developed by Milanés et al. (2012) has the objective
to avoid a rear-end collision in congested traffic situations.
Authors have developed a collision warning system and a
collision avoidance system.

Furthermore, Anderson et al. (2012) work on navigation
for semi-autonomous vehicle taking into account road’s
geometry and vehicle’s limits to get the reachable path
avoiding collision while keeping comfort and control of
the car. In the same field of research, Pérez et al. (2012)
present an autonomous vehicle guidance system based on

fuzzy logic with the intention to construct a path without
any disturbance such as traffic jam, road closure, etc.
Other teams focus on car intelligence, i.e., control agent
for longitudinal and lateral dynamic based on fuzzy logic,
see Rastelli Pérez et al. (2013)

Another topic of research focus on driver intention see
Liebner et al. (2012) and driver fatigue see Yang et al.
(2010). The last research team collects information (EEC
i.e. electroencephalogram, ECG i.e. electrocardiograph
and electromyogram) and with a Bayesian Network rec-
ognizes driver fatigue. But this system is intrusive and is
not dedicated to be on board implemented.

At the same time, Vehicular Ad-hoc NETwork (VANET)
is coming up and allows communication between vehicles
(V2V) and between vehicle and infrastructure (V2I), so
we take into account other road users, see Hartenstein
and Laberteaux (2009). For example, Firl et al. (2012)
introduce V2V, V2I and navigation information coupled
with an hidden Markov model to recognize and classify
situations. V2V can also be used for shared sensing see
Caveney and Dunbar (2012). This possibility of low-
cost communication opens up new opportunities in the
safety management. For that reason, considering semi/full
autonomous car or smart vehicle, it is necessary that the
car is capable of communicating. Moreover, those cars need
communication to send warning messages, for platooning,
to shared sensing, for safety and comfort control, etc.

Some research teams work on risk estimation where in
general risk is related to time to collision. The principle is
to predict trajectory in absence of intersections and to es-
timate probability of front-collision and rear-collision such
as Houenou et al. (2014). They predict the trajectories of
the ego vehicle and of the other cars detected on the scene,
and then compute a Monte Carlo simulation by taking
into account the propagation of uncertainty to obtain risk
probability. In Lefèvre et al. (2012) a method to estimate
intersection collision risk is presented using a Dynamic
Bayesian Network. The probability is based on position,



Fig. 1. Scheme of risk formation

speed and orientation of each vehicle (with information
gathered by V2V). Then, it compares the estimated driver
maneuvers and the driver intention.

This paper deals with a new tool called RIsk Level Assess-
ment Tool (RILAT) which estimates a risk level by using
a Bayesian Network (BN). This BN takes into account si-
multaneously estimates of driver attention, vehicle motion,
environmental parameters such as road infrastructures,
weather and information coming from other cars. In a
first step, presented in this paper, RILAT evaluates the
probability that an accident occurs, and it is tested only
in simulation. Further works will focus on the evaluation
of damages, implementation in our test car and human-
machine interface. Some examples of other works in this
field are Lefèvre et al. (2012) or Houenou et al. (2014).
RILAT uses sensors already mounted on standard vehicles
(e.g. available on CAN bus), a few additional low cost
sensors and shared information by V2V. For instance,
neither directly measured human physiological data (e.g.
EEC and ECG), nor specialized RaDAR / LiDAR systems
are used to estimate risk. Evidently, if these measurements
are available, risk estimation can be enhanced.

In a more general way, risk estimation can be imple-
mented on ADAS or autonomous cars. Indeed, even for au-
tonomous cars, risk can not be zero, due to the uncertainty
of environment such as the evolution of the road surface
(i.e. adherence), motion and intention of the pedestrians,
cyclists, etc. Another application could be monitoring used
by insurers or the police to collect and evaluate driver be-
havior and in the case of an accident, driver responsibility.

This paper is organized as follows: section 2 presents the
risk definition, and a short introduction to VANETs and
Bayesian Networks. In section 3, variables used for the pre-
diction of risky situations are defined. With these variables
we construct a causal network modeling the interactions
between variables and two risky situations which are rear-
end collision and lane departure crash. Subsequently, the
causal network is completed with probabilities to make the
BN. In section 4, the simulation results are presented and
analyzed for the rear-end collision case. Finally, conclu-
sions are given in section 5.

2. DEFINITIONS AND PRINCIPLES

2.1 Risk

One definition of risk is given by the International Organ-
isation for Standardization (ISO 31’000): risk is expressed
in terms of a combination of gravity, i.e. the consequences

of an event (including changes in circumstances) and the
associated likelihood of occurrence. On actual state of our
work, the paper focuses on the probability of an accident
i.e. a collision with a mobile obstacle (e.g. pedestrians,
cyclists, vehicles) or with a fixed one (e.g. road infras-
tructure). The event consequences will be developed in
further studies. For simplicity of notation, the probability
of occurrence of the risk will be called risk level.

We distinguish two kinds of risk: the impending risk
and the latent risk. The impending risk is associated to
a clearly identified danger which can cause an accident
in a temporal horizon of several seconds. For instance,
when approaching a curve, the tool analyzes the risk of
losing control by taking into account vehicle speed, road
adherence estimation and road curvature. The latent risk
expresses the possibility of a driver-related danger due
to reckless behavior (e.g. non-respect of safety distances,
speeding, zigzagging), or increased reaction time (e.g.
tiredness, distraction). This risk is present even without
any clearly identified danger in a short time horizon.

2.2 Car Communication

Autonomous car use integrated sensors to sense the lo-
cal environment (GPS, LiDAR, vehicle internal sensors,
drivers state, etc.), communication with other vehicles
will enlarge the sensing range and situation awareness. As
discussed in introduction, information may come from dif-
ferent objects (vehicle, infrastructure, smartphone, etc.).
In this paper, we will consider only V2V and will integrate
more objects in future works. RILAT needs information
about the environment such as weather, kind of road, road
infrastructure, drivers state, vehicles dynamic (i.e. of ego
car and others). VANET has a high signal range compare
to a RaDAR or LiDAR. It is used to communicate with
surrounding cars and to exchange information like speed,
acceleration, driver intention (e.g. overtake a car, cross-
road), safety messages, shared sensing, to confirm or deny
the own knowledge of environment states and individual
estimated risk level.

Crucial point in VANET is the quality of service especially
in such kind of security application. Information should
arrive without exceeding a fixed delay. In different study
about VANET, it is shown that the arrival of a message
is not guaranteed and the delay of delivered message may
vary depending on environment conditions as shown in
Ledy et al. (2015). The VANET research teams work on
the improvement of message spread and management i.e.
to chose the best path to reach receivers, to secure the
communication and to get a high rate of message received.
Another advantage of communication is the correlation
between information from the own sensors and commu-
nicated information that will attenuate data lost in case
of sensor failure.

2.3 Bayesian Network

Neapolitan (2003) defines briefly Bayesian Networks as a
graphical structure coding causal bond between variables,
associated to a probabilistic model. This last model is
obtained using statistical data, expert knowledge.



Fig. 2. Example of a Bayesian Network scheme

Fig. 2 shows the dependency between three nodes. A
node represents a variable and can eventually be observed.
Node X which is the parent of Y , is defined by a prior
probability, while Y is defined by a conditional probability
i.e. probability depending on X. Node Z only depends on
his parent Y and his conditional probability. Hence each
node is characterized by a conditional probability table
(CPT). Action can only go in arrow direction which means
Y will never act on X. But information can go from X
to Z and vice versa. Additionally, we can get information
about the node Y (supposed not measured in this example)
thanks to the observation of the node X, or Z or both
simultaneously. For more details see Pearl (1988) and Korb
and Nicholson (2010).

The advantage of choosing BN is that it facilitates model-
ing of highly non linear and uncertain interactions between
environment, driver and vehicle. Furthermore it provides
directly the probability of a risk situation and not mea-
sured nodes can be estimated when information from other
variables is available. At last, it provides a clear graphical
structure with a causal interpretation.

3. RISK LEVEL ASSESSMENT TOOL

3.1 Feature of the instantaneous risk level assessment tool

As mentioned in section 2 we distinguish two kinds of risk,
impending risk and latent risk, but in this paper we only
focus on the impending risk tool.

For RILAT, considered accidents are collisions with fixed
or mobile objects i.e. cars, pedestrians, road infrastruc-
tures, etc. Accidents can be explained by the maladjust-
ment of the coupled triplet: inter distance (i.e. distance
between ego car and road users, or road infrastructure),
speed, and driver behavior. An illustration is given by
a car running quickly, so the driver has to compensate
by increasing the inter distance and his level attention
compared to normal one. The tool is composed of four
blocks (see Fig. 3) which are the driver behavior block,
environment and car features block (i.e. influence of the
weather on the road, the road surface, etc.), the inter
distance block which includes car velocity, and finally, the
risk block. These blocks are a model which represents a
causal relation between the variables.

Behavior block To caracterize the safety distance we
evaluate the minimum stopping distance. For that we

Driver
Behavior

Risk

Environment
and car

Inter
Distance

Fig. 3. Interactions between the triplet and risk

Tiredness

Attention

Gaze ∆α γAge

Reaction
Time

Fig. 4. Causal network of reaction time

Tiredness

Travel
Time

Biorhythm External
Influence

Eyelid
Time

Fig. 5. Causal network of tiredness

suppose that the ego car applies an emergency braking.
The greater the distance between the two cars is compared
to the stopping distance, the bigger the margin of safety
is. But if the ego car brakes weaker, margin will be less
important. Therefore the risk level will raise and we warn
the driver to brake stronger. By this procedure, safety
distance depends on the initial speed of the ego car, the
maximum deceleration (depends only on environmental
states and car features) and the reaction time.

Hence all driver states (e.g. fatigue, distraction) and driver
behavior (e.g. prudent or risky driving) are linked to ac-
cident probability only via the reaction time. This vari-
able depends on tiredness, attention, the gaze tracking
and the driver age (e.g. an elderly has his reflex and
movement speed slow) see Fig. 4. The blue nodes are
observed variables, green dashed nodes are variables that
are communicated by VANET, and bold variables will be
developed in a further graph. Nodes ∆α and γ are symp-
toms of attention. ∆α compares the steering angle to the
normal trajectory (i.e. if the car zigzags one explanation
can be that the driver is inattentive). γ is the longitudinal
and lateral accelerations, which can be used to analyze
driver behavior abruptness. Finally the reaction time is
communicated to other road users. Indeed, the probability
that an inattentive driver has to make an emergency stop
is augmented compares to an attentive and anticipating
driver. Consequently informing following cars allow drivers
to reduce risk level by increasing the inter distance.

The tiredness node in Fig. 5 depends on travel time,
external influences such as ambient temperature, and
biorhythm i.e. biological cycles depending on driver habit.
For example, a driver used to drive by night, is probably
less tired than someone who is not accustomed. Tiredness
can partially be observed by eyelid time.

In Fig. 6 attention depends on road monotony and the
distraction in the cabin, e.g. talking, radio and telephone
call. For example if the driver is not tired and he is talking
to the passenger, so he is likely to be distracted. On the
contrary, if he is tired, talking help him to stay awake, see
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also Canadian Centre for Occupational Health and Safety
Government of Canada (2015).

Monotony occurs mainly on highway, when traffic is less
important, and on straight roads. Hence road monotony
depends on where the vehicle is in or out of town.

∫
α

gives the evolution of steering angle during a time window
(see Fig. 7). A low value means that the road is straight.

Environment and car features block All car and en-
vironment states are linked to accident probability via
the maximum deceleration amax see Fig. 8. amax is the
physical limit of the brakes, whether or not the driver goes
up until this limit.

Vehicle state gathers car features such as brakes, tires and
dampers status. The road state represents the environment
effect on the road, i.e. the road is dry, wet or icy. Road
state is the combination between information coming by
VANET and our knowledge about the weather. In fact,
temperature and precipitation sensors give only uncertain
information about the weather. That is why communica-
tion allows to decrease or increase the uncertainty. We
communicate only the measured weather to avoid an auto-
validation of our knowledge by repeated communication.

Inter distance block The inter distance is the most
important part of the risk assessment. Because if the car
inter distance is adapted whatever the situation, then the
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Fig. 9. Causal network of risk assessment

accident can be avoided. The inter distance is a function
of speeds and positions. These two variables are accessible
thanks to information already present in the car, to car
communication and GPS. Car mapping combined with
shared sensing give the positions and speeds of road users,
and thus their inter distance.

Risk block Risk block depends on the reaction time, max-
imum deceleration, speed, and inter distance see Fig. 9.
The impending risk can be split in two parts: rear-end
collision with mobile objects (actually only vehicle) and
lane departure crashes (e.g. front-end collision, collision
with roadside object and road-leaving in curve).

3.2 Translation into BN

The causal network has to be completed with a proba-
bilistic model. This is done by associating to all nodes a
probability distribution table: for not measured root nodes
(e.g. age or travel time) this table contains prior probabil-
ity and for all other nodes their conditional probability.

Standard BN deals with discrete nodes which is adapted
for some nodes like weather or telephone call (i.e. discret by
nature). The continuous variables have to be discretized.
The number of states depends on several parameters. For
instance in the case of temperature even if the sensor
precision would allow a fine discretization, two or three
states are sufficient. In fact that what we want to know is
whether or not a wet road surface turns icy. Additionally
knowing that computation time depends exponentially on
the number of nodes and states, uselessly granularity has
to be avoided. On the other side, for some variables like
the reaction time, it would be advantageous to discretize
finely. But we do not have precise measurement but only
a rough estimation. Therefore more than three states for
the reaction time would show a precision which does not
exist.

The above BN is described by twenty six tables (one for
each node). Due to the limited page number we present
only one table as an example see Table 1. The BN is
coded with the Matlab Bayes Net Toolbox created by
Murphy (2001). Tables are filled with experts knowledge,
data from statistical documents, official accident reports
(ONISR (2014)), and personal knowledges of the situation.
Therefore, further discussions with experts can enhance
estimation quality.



Situations Result

Temperature (◦C) Precipitation Weather
T < −3 −3 ≤ T < 1 1 ≤ T < 4 T ≥ 4 True < 1h False Sun Rain Snow

X X 0 0.1 0.9
X X 0 0.3 0.7

X X 0 0.85 0.15
X X 0 0.99 0.01

X X 0 0.05 0.95
X X 0.05 0.1 0.85

X X 0.05 0.9 0.05
X X 0.05 0.95 0

X X 0.9 0 0.1
X X 0.95 0 0.05

X X 0.99 0 0.01
X X 1 0 0

Table 1. Conditional probability of weather

3.3 Computation of risk

As already mentioned, RILAT assess vehicle rear-end
collision risk and lane departure crashes. As an example,
risk assessment between a car B following directly a car A
is described in this section.

A potential dangerous situation appears when car A brakes
and when the inter distance, with regard of the vehicle
speed and reaction time of driver B, is small. Hence the
following classification of inter distance, as in Wardzinski
(2008), is adopted see Fig. 10: the low risk zone is charac-
terized by a low collision probability. Driver B is able to
stop without having to make an emergency stop in order
to avoid collision. This zone corresponds to the French
highway code which specifies that a driver has to keep at
least the distance he covers in two seconds, called dmargin.

In the high risk zone, there is a high probability that
emergency braking by driver B avoids collision. In the very
high risk zone, even if the driver B makes an emergency
braking, there is low probability for avoiding collision. The
risk estimation for each zone corresponds to maximum risk
because it is supposed that driver A makes an emergency
stop. In fact, actual risk can be lower, because driver A is
not necessarily applying emergency braking and possibly
not even braking at all. A solution to improve risk assess-
ment could be achieved by taking into account road in-
frastructure as approaching highway entrance, crossroads,
traffic lights, etc. (object of further works).

To determine these three areas (states of safety distance
node), RILAT makes the difference between the stopping
distance of car A (i.e. braking at the maximum decelera-
tion amax which is the worst case) and the stopping dis-
tance of car B augmented by the distance covered during
the estimated reaction time of B. This distance is called
dmin which, in absence of correction term, provides no
safety margin. Thus a correction term X is chosen depend-
ing on road surface state (dry, wet, icy) X = 10%, 15%
and 25%. Also dmargin is augmented by a correction term
Y (Y = 5%, 5% and 5%). With these definitions, zone
classification is shown in Table 2.

4. SIMULATION RESULTS

As examples, five scenari are discussed in Table 3. In all
these scenari, two cars are moving in town, where car

Low
Risk Zone

High
Risk Zone

Very High
Risk Zone

Car B Car A

Fig. 10. Three zones of safety distance

Comparison Result

dA,B > dmargin · Y% Low risk zone
dmargin · Y% ≥ dA,B > dmin ·X% High risk zone

dA,B ≤ dmin ·X% Very high risk zone

Table 2. Safety distance states depending the
inter distance

Scenario Reaction Road Inter
Number time state distance (m)

1 Normal Dry 15
2 Normal Wet 15
3 Normal Slippery 20
4 Normal Dry 13
5 Average Dry 15

Table 3. Five scenari

Scenario Risk level (%)
Number Low risk High risk Very high risk

1 0 89 11
2 0 46 54
3 0 37 63
4 0 40 60
5 0 0 100

Table 4. Risk level of the five scenari

A runs at 11.11 m/s (40 km/h) and car B is getting
closer to A at 11.94 m/s (43 km/h) with different reaction
time, weather condition, road state and inter distance. On
Table 4 we show the results of risk level assessment. As
already mentioned, the estimated values concern maxi-
mum risk, as for we suppose that driver A is performing
emergency braking. In reality, driver A, when braking,
does not necessarily go up until maximum deceleration,
and even, in most of time, he will not brake at all. Because
of the uncertainty of the probability values used in the BN,
the major signification of the estimated risk level lies not
in its absolute value but in its evolution in time.



As shown in Table 4, the legal distance dmargin is not
respected by drivers, in fact for car running at 11.94
m/s, dmargin = 23.9 m. This is an often observed driver
behavior when traveling in town. Hence, for scenario 1
and dA,B > dmin ' 13.5 m, 11 % are in very high risk
of an accident. Almost all drivers are safe as long as car
A is not making an emergency braking. In scenario 2, car
accident level increases which is due to the lower amax. For
scenario 3, even if the driver increases the inter distance
(i.e. he is more careful) the risk level is in a very high
risk of collision that means the driver overestimates his
amax. In scenario 4, dA,B < dmin, car B is under the
limit of safety. Thus if car A brakes the risk of collision
is important, that is why the probability of high risk zone
is increasing in comparison to the first scenario. The last
scenario reveals for a bad reaction time (e.g. a tired driver)
a 100 % risk level when driver A makes an emergency
braking. Hence, beyond of 2 s reaction time, car accident
could be unavoidable.

5. CONCLUSION AND FUTURE WORK

In this paper we describe a new tool, called RIsk Level
Assessment Tool. It deals with impending risk (i.e. it can
occur in a short time horizon) and latent risk (not pre-
sented in this paper). Information needed for assessment
are obtained by several sources: sensors already present
in standard cars, some additional low cost sensors and
information exchange via VANET covering interactions
between drivers, vehicles and environment such as signal
panels, traffic light which will be added to our model in
future works. Naturally, RILAT allows sensors to be added
such as RaDAR or LiDAR, cameras etc.

The causal representation of the Bayesian Network allows
an easy interpretation of the situation. Moreover risk
level corresponds to the computed probability of the three
defined risk levels. Then for rear-end collision, we evaluate
the minimum distance to stop the car for all the possible
situations and classify the inter distance. However, the
assess risk is the maximal risk because we are not taking
into account the probability that driver A is not necessarily
applying emergency braking. Therefore driver braking
intention will be the object of future works, as well as
risk estimation of lane departure crashes, uncertainty in
car communication and test in realistic environments.
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Pérez, J., Godoy, J., Milanés, V., Villagra, J., and Onieva,
E. (2012). Path following with backtracking based on
fuzzy controllers for forward and reverse driving. In 2012
IEEE Intelligent Vehicles Symposium (IV), 1108–1113.
doi:10.1109/IVS.2012.6232191.
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